Megathrust Earthquake
Controls along the Cascadia
Subduction Zone
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~1,000 km in length

Located off the coast of Southern
California to Vancouver Island

Subduction Zone
60-130 km offshore

Juan de Fuca Plate & North
American Plate

January 26, 1700 [Goldfinger
(2003)]

Evidence of 6 Events in last
2,000 years [Nelson (2006)]

12 separate tsunami events over
past 5,000 years [Nelson (2006)]




N. American plate flexing upwards due to drag of the underlying
plate beneath.

Hypocenter of a Megathrust earthquake.

N. American plate moves out to sea due to the removing of the
upward flexure.

Lowers the coastline causing a rise in sea level



Reclassification of Cascadia

type

o
O
-
m
O

Mariana-type

Source: [Uyeda (1979), Heaton & Kanamori (1984)]



Strong Evidence for past Megathrust-
type Earthquakes

a =well vegetated lowland

= former margin of tidal creek

€ =side of Pleistocene valley

= borehole

e =peaty layer

= sandy interval

= fossil rhizome of T. maritima

=T. maritima is dominant living plant|

Modified from Atwater (1987)



What tectonic processes and geometric
constraints along the Cascadia
subduction zone control megathrust
earthquakes?



Observation: Locked Zones

Methods:

JUAN DE FUCA

PLATE

Results:

Source: [Fluck (1997)]



Observations: Locked Zone cont.

LEFT = RATES OF UPLIFT
CROSS SECTIONAL & 3-D VIEW OF RIGHT = DIRECTIONAL VECTORS &
CASCADIA CONTOURS OF HORIZONTAL VELOCITY

HORIZONTAL
(mmdyr)

e
100 km

Source: [Fluck (1997)]



Observations: Preferred Trajectory

Preferred Trajectory:

Rate of Oceanic Preferred
Convergence Lithosphere Trajectory
Age

Horizontal Controls on Earthquake

(Largest

Earthquakes) Size :

Median Median Median

Characteristics of
Vertical Cascadia:

(Relatively
Aseismic) 7

Modified from Ruff & Kanamori (1983)



Observations: Excess Trench
sSediments (ETS)

1. Subducted in horst &
graben structures

_ 2. Thin lamination
underplates

HORST AND GRABEN STRUCTURE

suspucreo accretionary prism
SEDIMENTS
EXCESS TRENCH SEDIMENTS 5 i
— - Regions of resistance
— . . .
— UNOERPLATING? within the subducting
— lithosphere
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Source: [Ruff (1989)]



Observations: Temperature vs. Depth
of Subducting Plate

Temperature (°C)
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Source: [Oleskevich (1999)]



Observations: Possible Explanation for Confined
southern Locking Zone

JUAN DE FUCA
PLATE
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Source: [Fluck (1997), McCaffrey (2000)]



Observations: Episodic Tremor & Slip

Episodic Tremor & Slip:

Implications:

Seismic Reflection Model (strong constraints for plate interface)

Distance along model (km)
150

velocity
“~_zone
vertical exaggeration 2.7X N

~

Source: [Tréhu (2008)]




Observations: Decoupling of the
Plates

Proposed Process:

Ay Gl
Vancouver Island Georgia Strait Mainland

Possible Detection of
this “hydro fracturing
of the seal’:

Source: [Audet (2009)]



Conclusions

Evidence for past megathrust earthquakes along Cascadia:

Cascadia will continue producing megathrust earthquakes:
1.
2.

3.
Basin and Range is confining the southern locking zone
Both young oceanic lithosphere and ETS result in anomalously hot
oceanic lithosphere being subducted.
Possible slip due to subducted asperities could lead to megathrust
earthquakes.
Decoupling is likely a result of a phase change and dewatering of
the down going slab
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